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Abstract
In this paper we consider symmetry-preserving difference schemes for the
nonlinear Schrödinger equation

i
∂u

∂t
+
∂2u

∂r2
+
n − 1

r

∂u

∂r
+ u|u|2 = 0

where n is the number of space dimensions.
This equation describes one-dimensional waves in n space dimensions in

many physical situations, including phenomena in plasma physics and nonlinear
optics. We will consider the nonintegrable case n � 2 for which the equation
admits solutions that blow up in a finite time, and construct discretizations
based upon moving mesh schemes that have the same Lie group properties and
Lagrangian structures as the continuous counterpart.

PACS numbers: 02.20.-a, 02.30.-f, 03.65.-w, 64

1. Introduction

Lie group theory started out as a theory of transformations of solutions of sets of differential
equations. Over the years it has developed into a powerful tool for classifying differential
equations and for solving them. These aspects of Lie group theory have been described in
many books and lecture notes [1–5].

Applications of Lie group theory to difference equations are much more recent [6–25]
with important recent work by Hydon [26] on continuous symmetries of discrete systems. The
main point in this area which distinguishes different approaches is the transformation of the
independent variables. One approach [6, 7, 13–15] deals with transformations of dependent
variables only, while the independent variables are fixed, and consequently so is the lattice.
This restriction is very strong and excludes most of the symmetries of the physical problems.
The second approach is to consider a difference, or differential-difference equation, together
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with a fixed lattice, on which the discrete variables take their values, to be given. One then
develops techniques for finding symmetries of these equations [22, 23]. In this approach it is
necessary to go beyond point symmetries and to consider Lie group actions at different points
of the lattice simultaneously. That way leads to the deformations of the admitted Lie algebra
with certain losses in some useful properties, and is applicable mainly to linear, linearizable,
or integrable equations.

The third approach is to start with symmetries of a differential equation and to introduce
a difference equation together with a symmetry-adapted mesh in such a way that all the
symmetries of the original differential equation are preserved [8–12, 16–21, 24]. In general it
is not possible to discretize a differential equation on a simple regular and orthogonal mesh
while preserving all of the point symmetries. It is either necessary to give up their point
character [22, 23], or to construct a symmetry-adapted mesh which can be nonregular and
nonorthogonal [16–21, 24]. In this article we follow the last procedure.

Our point of view is to pose the question: how does one discretize a differential equation
while preserving all of its Lie point symmetries? Here one starts from a differential equation
and finds its Lie point symmetries, using well known techniques [1–4]. Thus a symmetry group
and its Lie algebra are a priori given. One then looks for a difference scheme, i.e. a difference
equation and a spatial mesh that have the same symmetry group and the same symmetry algebra
L. In particular the Lie algebra L is realized by the same vector fields in the continuous
and in the discrete case. The use of symmetry group methods thus leads to a natural, and
powerful technique for deriving moving mesh discretizations of partial differential equations.
Such moving meshes are especially important when studying problems (such as the nonlinear
Schrödinger equation (NLS) in higher dimensions) which develop singular structures.

The structure of the symmetry group essentially effects the construction of equations and
meshes. Group transformations can distort the geometric structure of a mesh that influences
the approximation and other properties of the difference equations. For earlier work on the
construction of the difference grids based on the symmetries of the initial differential equation
see references [8–12, 16, 17].

In this work we will follow the moving mesh idea combined with the conservation of Lie
point symmetries and the Lagrangian structure. The object of our study is an investigation
of methods for determining the local structure of the blow-up of the radial solutions of the
NLS. In one dimension this equation is integrable and there exist many numerical schemes—
see for example [27–30]—which are either based upon preserving this integrability (often
through a direct discretization of the underlying Lagrangian) and/or preserving the mass or
Hamiltonian energy of the solution. When studying blow-up phenomena in higher dimensions
it is much less clear whether this is a good idea. In particular it can lead to meshes which
have a relatively sparse number of points in the blow-up region [21]. An alternative approach,
which is described in [20, 21], which has proved effective for a number of blow-up problems
is to construct (moving mesh) numerical methods which preserve the scaling symmetries
close to the blow-up point. Whilst these may not strictly conserve mass or energy, they have
proved effective in resolving the blow-up structure. A key test of this is whether they can
accurately reproduce the self-similar evolutionary behaviour which is known [31] to describe
the asymptotic behaviour of the blow-up in dimensions greater than 2. The purpose of this
current study is to determine how feasible it is to combine these two approaches, namely a
discretization of the Lagrangian, together with conserving the scaling symmetries.

The structure of the remainder of this paper is as follows. In section 2 we review the
symmetries and conservation laws of the NLS. In sections 3 and 4 we introduce new Lagrangian
coordinate systems which will eventually form the basis of the moving mesh discretization.
In section 5 we study the conservation laws of the original problem when viewed in these new
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coordinates. In section 6 we introduce a first invariant discretization of the NLS based upon a
fixed mesh. In section 7 we then extend this to a moving mesh discretization and in section 8
study the conservation laws associated with this. Finally in section 9 we consider the problem
with blow-up.

2. The cubic nonlinear Schrödinger equation: symmetry, Lagrangian structure and
conservation laws

We now turn our attention to considering the singular solutions of the radially symmetric cubic
NLS given by

i
∂u

∂t
+
∂2u

∂r2
+
n − 1

r

∂u

∂r
+ u|u|2 = 0 (1)

where n is the number of space dimensions.
This equation describes many physical situations, including phenomena in plasma physics

and nonlinear optics, and a review of these is given in [31]. For the case of n = 1, the equation
is integrable and a solution exists globally. For the remainder of this paper we will consider the
nonintegrable case n � 2 in which singularities are observed to develop given suitable initial
data. A motivation for considering the radially symmetric form of the NLS is that it has been
observed in numerical experiments reported in [31] that singularities in the NLS when posed
as a problem in three dimensions are highly symmetric close to the singular point.

Let us substitute the polar representation

u(r, t) = Aei� (2)

(whereA = A(r, t),� = �(r, t) are real functions) into equation (1); we then get the following
two equations:

At + A�rr + 2Ar�r +
n − 1

r
A�r = 0 (3)

A�t + A�2
r − Arr − n − 1

r
Ar − A3 = 0. (4)

Standard Lie group analysis methods yield the symmetries of the system (3), (4), and for the
case n � 2 the admitted Lie algebra of generators is the following which describes translations
in time and phase and a rescaling of the solution:

X1 = ∂

∂t
X2 = ∂

∂�

X3 = 2t
∂

∂t
+ r

∂

∂r
− A

∂

∂A
.

(5)

Now consider the following functional:

L =
∫
�

L(t, r, u, ut , ur)rn−1 dr dt (6)

where L is some Lagrangian function.
The invariance of L under the action of a symmetry group is connected through Noether’s

theorem with existence of conservation laws for the Euler equations, which yield the stationary
value of functional (6).

To apply Noether’s theorem for (3), (4) we have generalized the Noether-type identity
(see [4]) to the case of radially symmetric solutions in dimension n so that the variation in L
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may be expressed in the following manner:

ξ t
∂L
∂t

+ ξ r
∂L
∂r

+ η
∂L
∂u

+ [Dt(η) − utDt(ξ
t ) − urDt(ξ

r)]
∂L
∂ut

+ [Dr(η) − utDr(ξ
t ) − urDr(ξ

r)]
∂L
∂ur

+ L[Dt(ξ
t ) + Dr(ξ

r)] +

(
n − 1

r

)
ξ rL

≡ (η − ξ tut − ξ rur)

[
∂L
∂u

− Dt

(
∂L
∂ut

)
− 1

rn−1
Dr

(
rn−1 ∂L

∂ur

)]

+ Dt

[
ξ tL + (η − ξ tut − ξ rur)

∂L
∂ut

]

+
1

r(n−1)
Dr

[
rn−1

(
ξ rL + (η − ξ tut − ξ rur)

∂L
∂ur

)]
(7)

where

Dt = ∂

∂t
+ ut

∂

∂u
+ · · · Dr = ∂

∂r
+ ur

∂

∂u
+ · · · u = (A,�). (8)

The operator identity (7) makes evident the connection of the invariance of functional (6):

ξ t
∂L
∂t

+ ξ r
∂L
∂r

+ η
∂L
∂u

+ [Dt(η) − utDt(ξ
t ) − urDt(ξ

r)]
∂L
∂ut

+ [Dr(η) − utDr(ξ
t ) − urDr(ξ

r)]
∂L
∂ur

+ L[Dt(ξ
t ) + Dr(ξ

r)]

+

(
n − 1

r

)
ξ rL = 0

with conservation law

Dt

[
ξ tL + (η − ξ tut − ξ rur)

∂L
∂ut

]
+

1

r(n−1)
Dr

[
rn−1

(
ξ rL + (η − ξ tut − ξ rur)

∂L
∂ur

)]
= 0

for any solution of the Euler equations

∂L
∂u

− Dt

(
∂L
∂ut

)
− 1

rn−1
Dr

(
rn−1 ∂L

∂ur

)
= 0.

For the NLS problem, it is easy to check that the Lagrangian

L = A2
r + A2�2

r + A2�t − 1
2A

4 (9)

yields the NLS system (3), (4) as Euler’s equations. This Lagrangian (9) is invariant with respect
to X1 and X2, and according to the Noether thereom (see the identity (7) with u = (A,�))
provides the system (3), (4) with the following conservation laws:

Dt {A2} +
1

rn−1
Dr{rn−12A2�r} = 0

Dt

{
A4

2
− A2

r − A2�2
r

}
+

1

rn−1
Dr{rn−1(2AtAr + 2A2�t�r)} = 0

(10)

which are the well known laws of conservation of mass and Hamiltonian for the NLS system.

3. Intermediate Lagrange coordinate system

Now we will change the coordinate system to allow for the potential movement of points in
the mesh that we will analyse in section 7. Let us prolong the symmetry operators (5) to the
subspace

{t, r, A,�; dt; dr; dA; d�}
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which contains differentials dt, dr, dA, d� so that

X1 = ∂

∂t
X2 = ∂

∂�

X3 = 2t
∂

∂t
+ r

∂

∂r
− A

∂

∂A
+ 2 dt

∂

∂(dt)
+ dr

∂

∂(dr)
− dA

∂

∂(dA)
.

(11)

By solving the system of linear differential equations with partial derivatives

Xi(Jk) = 0

where i = 1, 2, 3; k = 1, 2, 3, 4, 5, we get the following complete set of differential invariants:

J1 = rA J2 = dt (dA)2 J3 = (dr)2

dt
J4 = d� J5 = A dr. (12)

This set gives us the possibility of finding the most general form for the evolution of r , which
also conserves the scaling symmetry (11):

dr

dt
= 1

dr
F (A dr; dt (dA)2; d�; rA). (13)

This result gives a means of evolving a computational mesh. If F = 0, then we get an
orthogonal coordinate system (on a fixed mesh); If F 	= 0, then we have a moving coordinate
system with an invariant evolution of r .

For simplicity we choose the following invariant evolution of r:

F = k(d�)
dr

dt
= k�r

where k > 0 is a control parameter (depending upon n), which can be chosen to control the
form of mesh obtained in the numerical calculations. For example it can prevent the mesh
becoming too sparse in certain regions.

As r varies we must extend the time derivative to involve the following Lagrangian
derivative:

d

dt
= Dt + k�rDr. (14)

Significantly, this operation does not commute with Dr :[
d

dt
, Dr

]
	= 0. (15)

Rewriting the system (3), (4) in the Lagrangian coordinates then gives
dr

dt
= k�r

dA

dt
= −A�rr + (k − 2)�rAr − n − 1

r
A�r

A
d�

dt
= Arr +

n − 1

r
Ar + (k − 1)A�2

r + A3.

(16)

It is easy to show that the extended system (16) admits the symmetry operators (11) prolonged
for the partial derivatives �r,�rr , Ar, Arr , dr/dt, dA/dt, d�/dt :

X1 = ∂

∂t
X2 = ∂

∂�

X3 = 2t
∂

∂t
+ r

∂

∂r
− A

∂

∂A
− 2Ar

∂

∂Ar

− 3Arr

∂

∂Arr

− �r

∂

∂�r

− 2�rr

∂

∂�rr

− dr

dt

∂

∂(dr/dt)
− 3

dA

dt

∂

∂(dA/dt)
− 2

d�

dt

∂

∂(d�/dt)
.
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4. The ‘mass’ Lagrange coordinate system

Now we will rewrite the system (16) in an orthogonal coordinate system by changing
independent variables (t, r) to (t, s) and involving the new dependent variable ρ as follows:

Ds = 1

ρrn−1
Dr. (17)

The purpose of this procedure is to recover the orthogonal differentiation property satisfied by
a fixed coordinate mesh, so that in the revised coordinate system[

d

dt
, Ds

]
= 0 (18)

where
d

dt
= Dt + k�rDr.

From (18) we have the following equation for ρ:

ρt + (kρ�r)r + k
n − 1

r
ρ�r = 0. (19)

From (19) and
dρ

dt
= ρt + k�rρr

we get one more equation, which yields an evolution for ρ of the form

dρ

dt
= −k

ρ

rn−1
(rn−1�r)r . (20)

Let us find the connection between s and t, r . From (17) we have

sr = ρrn−1.

From the orthogonality of the coordinates (t, s):

ds

dt
= 0

we get

st = −kρ�rr
n−1.

Thus, we have a nonpoint transformation of the independent variables from (t, r) to (t, s):

ds = ρrn−1 dr − kρrn−1�r dt

t̄ = t.
(21)

We also should add to (21)

ρ > 0

which implies the absence of a ‘vacuum gap’ in the Lagrange coordinate system. It is
worth drawing a link at this stage between this approach and the theory of equidistributed
meshes—see [20]. In this procedure a time-independent computational variable s is used for
all calculations and r is expressed in terms of s. To determine r a monitor function M is used
such that ∂s/∂r = M . It is plain that this approach is equivalent to the orthogonal Lagrangian
approach that we consider provided that we set M = ρrn−1.

Remark. We notice that the differential form (21) is total (complete); moreover it possible to
start from the differential form ds as

ds = ρrn−1 dr − kρrn−1�r dt
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and then to demand the completeness of it, i.e.

Dt(ρr
n−1) = −Dr(kρr

n−1�r)

which is equivalent to (19).
Now, rewriting the system (16)–(20) in terms of the orthogonal Lagrange coordinates

(t, s) we obtain the system

dr

dt
= kρrn−1�s,

dA

dt
= rn−1

(
−Aρ(ρrn−1�s)s + (k − 2)ρ2rn−1�sAs − n − 1

r
Aρ�s

)

A
d�

dt
= ρrn−1(ρrn−1As)s +

n − 1

r
rn−1ρAs + (k − 1)Aρ2�2

s r
2(n−1) + A3

dρ

dt
= −kρ2(ρr2(n−1)�s)s .

(22)

5. Conservation laws in the Lagrangian coordinate system

We can now derive the conservation laws for the system (22), by using the conservation of
differential forms. We denote conservation laws for the system (3), (4) as

Dt {A0} + Dr{B0} = 0 (23)

where A0, for instance, for the first (mass) conservation law is

A0 = rn−1A2.

The equation (23) is equivalent to the existence of the differential form

d� = A0 dr − B0 dt. (24)

If we now transform the differential form (24) to the new set of independent variables (21) we
have

d� = A1 ds − B1 dt = A1(ρr
n−1 dr − kρrn−1�r dt) − B1 dt.

It follows that

A1 = A0

ρrn−1
B1 = B0 − kA0�r. (25)

This we may rewrite as a conservation law in the new coordinate system to give

d

dt
{A1} + Ds{B1} = 0. (26)

In accordance with (25), the system (22) then has the following conservation laws:

d

dt

{
A2

ρ

}
+ Ds{r2(n−1)A2ρ�s(2 − k)} = 0

d

dt

{
1

ρ

(
A4

2
− ρ2A2

s r
2(n−1) − ρ2A2r2(n−1)�2

s

)}

+ Ds

{
ρr2(n−1)

[
2As(Ȧ − kρ2r2(n−1)As�s) + 2A2�s(�̇ − kρ2r2(n−1)�2

s )

− k�s

(
A4

2
− ρ2r2(n−1)A2

s − A2ρ2r2(n−1)�2
s

)]}
= 0

(27)
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where

Ȧ = dA

dt
�̇ = d�

dt
.

Interestingly, the system (22) has one additional conservation law:

d

dt

{
1

ρ

}
+ Ds{−kρr2(n−1)�s} = 0 (28)

which does not spring from the invariant Lagrange structure and is a continuity equation for
the mesh density.

Transforming into the space (s, t, A,�, ρ, r) the symmetry operators (5) become

X1 = ∂

∂t
X2 = ∂

∂�

X3 = 2t
∂

∂t
+ r

∂

∂r
− A

∂

∂A
+ s

∂

∂s
+ (1 − n)ρ

∂

∂ρ
.

(29)

The system (22) allows an infinite-dimensional symmetry algebra. Indeed, in addition to the
algebra (29) it allows the symmetries generated by

X4 = f (s)
∂

∂s
+ ρfs

∂

∂ρ
(30)

where f = f (s) is an arbitrary function.

6. The discretization procedure

Having considered various coordinate transformations of the NLS we now turn our attention
to discretizations of this system in terms of these coordinates. We start our study of such
discretizations by considering the NLS in the original variables (3), (4) and will proceed to
construct an invariant difference scheme with all of the appropriate conservation laws. The
first question that we need to address is finding the geometry of a mesh appropriate to the
discretization procedure. In [9–12] the criterion of the invariance of an orthogonal mesh under
the action of a symmetry operator was developed and led to the system

D
+h
(ξ t ) = −D

+τ
(ξ r ). (31)

Here h is the mesh spacing in the r-direction and τ in the t-direction. The equation (31) is
true for all of the symmetry operators (5), so we can consider using an orthogonal mesh. The
following criterion provides with the invariance of regularity of a mesh in both the r- and
t-directions:

D
+τ
D−τ
(ξ t ) = 0 D

+h
D
−h
(ξ r) = 0 (32)

where

D
+h

=
S
+h

−1

h
D
−h

=
1 − S

−h

h
D
+τ

=
S
+τ

−1

τ
D−τ

=
1 − S

−τ

τ

are the right and left difference differentiation in the x- and t-directions; S
+h
, S

−h
, S

+τ
, S

−τ
are

corresponding shift operators. Thus we will initially use the simplest invariant mesh which is
orthogonal and regular in both directions (see figure 1), with the constant steps h and τ . We
note at this stage that whilst this mesh has good symmetry properties it is not necessarily ideal
for problems with associated small scales of time and length—this leads to the discretizations
on regular meshes in the Lagrangian variables that we consider in subsequent sections.
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Figure 1. The orthogonal mesh in the original variables.

On this mesh we can consider the discrete version of the Lagrangian functional given by

L =
∑
i

Li (A,Ar,�r,�t)hτ (33)

derived over an appropriate domain �. As a discrete Lagrangian we choose the following:

L = A2
r + A2�2

r + A2�t − 1
2A

4 (34)

where

Ar = A+ − A

h
= D

+h
(A) �r = �+ − �

h
= D

+h
(�) �t = �̂ − �

τ
= D

+τ
(�) (35)

are the corresponding right difference derivatives. Our motivation is now to use this to
derive discretization schemes with the correct conservation laws. To apply the difference
analogue of the Noether theorem for (34) we have generalized the Noether-type operator
identity (see [8–12]) to give

ξ t
∂L
∂t

+ ξ r
∂L
∂r

+ η
∂L
∂u

+ [D
+τ
(η) − ut D

+τ
(ξ t ) − ur D

+τ
(ξ r )]

∂L
∂ut

+ [D
+h
(η) − ut D

+h
(ξ t ) − ur D

+h
(ξ r)]

∂L
∂ur

+ L[D
+τ
(ξ t ) + D

+h
(ξ r)] +

(
n − 1

r

)
ξ rL

≡ ξ t
{
∂L
∂t

+ D−τ

(
ut

∂L
∂ut

− L
)

+
1

rn−1 D
−h

(
rn−1ut

∂L
∂ur

)}

+ ξ r
{
∂L
∂r

+ D
+τ

(
ǔr

ˇ(
∂L
∂ut

))}
+

1

r(n−1) D+h

{
(r−)n−1

[
u−
r

(
∂L
∂ur

)−
− L−

]

+

(
n − 1

r

)
L
}

+ η

{
∂L
∂u

− D−τ

(
∂L
∂ut

)
− 1

rn−1 D
−h

(
rn−1 ∂L

∂ur

)}

+ D
+τ

{
ξ t Ľ + (η − ξ t ǔt − ξ r ǔr )

ˇ(
∂L
∂ut

)}

+
1

r(n−1) D+h

{
(r−)n−1

[
ξ rL− + (η − ξ tu−

t − ξ ru−
r )

(
∂L
∂ur

)−]}
(36)

where u = (A,�), and all derivatives are difference derivatives. The identity (36) can be
proved by direct calculations by applying a specific difference Leibnitz rule which is given
in [9–12].

From the identity (36) we have the difference Euler equation

∂L
∂u

− D−τ

(
∂L
∂ut

)
− 1

rn−1 D
−h

(
rn−1 ∂L

∂ur

)
= 0 (37)

but this equation possesses conservation laws only if ξ t = ξ r = 0.
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Figure 2. The orthogonal mesh in the computational
variables.

If the left-hand side of the equation (36) equals 0, then some other equation

ξ t
{
∂L
∂t

+ D−τ

(
ut

∂L
∂ut

− L
)

+
1

rn−1 D
−h

(
rn−1ut

∂L
∂ur

)}

+ ξ r
{
∂L
∂r

+ D
+τ

(
ǔr

ˇ(
∂L
∂ut

))}
+

1

r(n−1) D+h

{
(r−)n−1

[
u−
r

(
∂L
∂ur

)−
− L−

]

+

(
n − 1

r

)
L
}

+ η

{
∂L
∂u

− D−τ

(
∂L
∂ut

)
− 1

rn−1 D
−h

(
rn−1 ∂L

∂ur

)}
= 0 (38)

possesses the conservation law

D
+τ

{
ξ t Ľ + (η − ξ t ǔt − ξ r ǔr )

ˇ(
∂L
∂ut

)}

+
1

r(n−1) D+h

{
(r−)n−1

[
ξ rL− + (η − ξ tu−

t − ξ ru−
r )

(
∂L
∂ur

)−]}
= 0. (39)

Now, let us apply this Noether-type identity for the Lagrangian (34). The Lagrangian (34) is
invariant under the actions ofX1 andX2. This immediately leads to the following conservation
laws:

D−τ
{A2} +

1

r(n−1) D−h
{2rn−1A2�r} = 0 (40)

D−τ

{
A4

2
− A2�2

r − A2
r

}
+

1

r(n−1) D−h
{2rn−1[ArAt + A2�t�r ]} = 0. (41)

So, the difference equations (40), (41) form an invariant scheme on an orthogonal regular mesh
and thus coincide with the difference conservation laws.

Notice, that this model is not unique, as some other equations can be obtained by the same
procedure starting from some other invariant Lagrangian.

7. The total difference form

Now let us consider the difference analogue of a total differential form on the orthogonal
difference mesh in the computational variable s, in accordance with the following picture
(figure 2).

By doing this we may derive discretizations of the NLS more appropriate to problems with
increasingly small length scales. In the upper right box we consider the following difference
form:

!s = srh + s+
t τ = ŝrh + st τ (42)
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where the difference operators on s are as follows:

sr = s+ − s

h
ŝr = ŝ+ − ŝ

h
st = ŝ − s

τ
s+
t = ŝ+ − s+

τ
.

It follows from (42) that

D
+h
(st ) = D

+τ
(sr ) (43)

leading to the completeness of the difference form (42).
Let us restate the following difference derivatives of the computational variable s:

sr = ρrn−1 st = −kρrn−1�r.

The completeness condition (43) then yields:

D
+τ
(ρrn−1) = −k D

+h
(ρrn−1�r). (44)

Relation (44) can be easily shifted to any needed mesh point.
Now we introduce the new difference differentiation operators of Lagrange type:

d

dt +
= D

+τ
+ k�r D

+h

d

dt −
= D−τ

+ k�̌r Ď
+h

(45)

where

Ď
+h

= S
−τ

D
+h

= D
+h

S
−τ

�̌r = S
−τ

�r .

We also invoke a couple of difference operators corresponding to right and left differentiation
in the s-direction as follows:

ρrn−1
D
+h
s = D

+h
ρ−(r−)n−1

D
−h

s = D
−h

. (46)

It is easy to check that the above-stated definitions give the orthogonality of a new mesh in the
‘computational’ (t, s) coordinate system:

ds

dt +
= 0

ds

dt −
= 0. (47)

8. Difference conservation laws in the Lagrange coordinate system

To study discretizations in the new coordinate system we transform the difference conservation
laws (40), (41) for the Lagrange coordinate system in the same manner as was followed in the
continuous case using the conservation of differential forms.

We denote the conservation law (40), (41) as

D
+τ

{A0} + D
+h

{B0} = 0 (48)

which is equivalent to the existence of the difference form

!0 = A0h − B+
0 τ = Â0h − B0τ. (49)

Now transform the differential form (49) by the change of independent variables:

t̄ = t !s = ρr(n−1)h − kρ+(r+)(n−1)�+
r τ = ρ̂r̂ (n−1)h − kρr(n−1)�rτ. (50)

In this derivation we have a ‘new’ spatial step hs = !s in the computational variable.
The difference form (49) can be represented in the (t, s) coordinate system by

!0 = A1hs − B+
1 τ = Â1hs − B1τ = A1(ρr

(n−1)h − kρ+(r+)n−1�+
r τ ) − B+

1 τ

= Â1(ρ̂r̂
n−1h − kρrn−1�rτ) − B1τ. (51)
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Then we have

A1 = A0

ρrn−1
B1 = B0 − kA0�r

ρrn−1

ρ̂r̂n−1
(52)

which we may rewrite as a difference conservation law in a new coordinate system:

D
+τ

{A1} + D
+h
s{B1} = 0. (53)

In accordance with (52), (53) we can finally rewrite the conservation laws in the following
form:

d

dt +

(
Ǎ2 řn−1

ρrn−1

)
+ D

+h
s

(
2(r−)2(n−1)(A−)2ρ−�−

s − kA2 ρ
2r3(n−1)

ρ̂r̂n−1
�s

)
= 0 (54)

d

dt +

(
řn−1

ρrn−1

[
Ǎ4

2
− ρ̌2Ǎ2�̌2

s ř
2(n−1) − ρ̌2ř2(n−1)Ǎ2

s

])

+ D
+h
s

(
2(r−)2(n−1)ρ−[A−

s (Ȧ
− − k(ρ−)2(r−)2(n−1)A−

s �
−
s )

+ (A−)2�−
s (�̇

− − k(ρ−)2(r−)2(n−1)(�−
s )

2)]

− k�s

ρ2r3(n−1)

ρ̂r̂n−1

[
A4

2
− ρ2A2�2

s r
2(n−1) − ρ2r2(n−1)A2

s

])
= 0. (55)

This system allows us to evolve the discrete solution. We must also allow for the evolution of
the mesh points given by the following two equations for the evolution of r and ρ:

dr

dt +
= kρrn−1�s (56)

d

dt +

(
ρrn−1

) = −kρ+(r+)n−1ρrn−1(ρrn−1�s)s. (57)

Thus, equations (54)–(57) form an invariant difference scheme on the orthogonal mesh in the
(t, s) plane which can be implemented to calculate solutions of the NLS as it evolves toward
a singularity.

9. The blow-up invariant solution

Finally we consider the application of the discretization (54) in the context of solutions with
developing singularities.

Let us first transform the symmetry operators (5) into the space (s, t, A,�, ρ, r):

X1 = ∂

∂t
X2 = ∂

∂�

X3 = 2t
∂

∂t
+ r

∂

∂r
− A

∂

∂A
+ s

∂

∂s
+ (1 − n)ρ

∂

∂ρ
.

(58)

We showed that the system (22) together with (58) has one more additional symmetry

X∗ = f (s)
∂

∂s
+ ρfs

∂

∂ρ
(59)

where f = f (s) is an arbitrary function.
The system (54)–(57) possesses the same symmetries (58) and has the additional symmetry

X∗ = f (s)
∂

∂s
+ ρ D

+h
s(f )

∂

∂ρ
. (60)
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Now, let us now consider the symmetry subalgebra

X = −2T0X1 + X3 = 2(T0 − t)
∂

∂(T0 − t)
+ r

∂

∂r
− A

∂

∂A
+ s

∂

∂s
+ (1 − n)ρ

∂

∂ρ
(61)

where T0 is some positive constant. Then we add to (61) the special case of operator (59),
(60):

X∗∗ = γ

(
s
∂

∂s
+ ρ

∂

∂ρ

)
(62)

that yields the subalgebra

X̂ = 2(T0 − t)
∂

∂(T0 − t)
+ r

∂

∂r
− A

∂

∂A
+ s(1 + γ )

∂

∂s
+ (1 − n + γ )ρ

∂

∂ρ
(63)

where γ is some ‘monitoring’ parameter. It is easy to see that γ = −1 corresponds to the
situation when s is an invariant of subalgebra (63). The corresponding symmetry operator is
the following:

X̂∗ = 2(T0 − t)
∂

∂(T0 − t)
+ r

∂

∂r
− A

∂

∂A
− nρ

∂

∂ρ
. (64)

Let us write down the invariant representation of the solution in that case:

A = Ā(λ)(T0 − t)−1/2 � = �̄(λ)

ρ = ρ̄(λ)(T0 − t)−n/2 s = s̄(λ)

λ = r(T0 − t)−1/2.

(65)

This solution has the desired property of having a self-similar form and of becoming singular
in a finite time T0 with amplitude proportional to (T0 − t)−1/2 whilst evolving on a length
scale proportional to (T0 − t)1/2. Thus, if such a solution exists for the underlying problem,
it is admitted by the discretization. As remarked earlier, this is a significant feature of such a
method, as it is known [31] that if n > 2 then the stable form of singularity evolution is that
of a monotone decreasing self-similar solution.

Remark. We should emphasize at this stage that whilst a solution of the form (65) may
formally be admitted, there is no a priori guarantee that the appropriate function Ā(λ) (which
usually has to satisfy certain regularity conditions at infinity) will exist. The evidence [32] is
that such a function does exist if n is slightly greater than 2 but it does not exist if n = 2.

As s is an invariant of this solution, there is no movement of waves in the s-direction for
the invariant solution of the form (65) and any distinctive point of the solution (65) in the λ

(gradient maximum or zero point for example) does not move in the s-direction. Thus s is
a true computational variable, in the sense that a ‘difficult’ problem computationally when
expressed in terms of r has been transformed into a more ‘regular’ problem in s allowing for
a more straightforward discretization.

The ordinary differential system and corresponding ordinary difference system can be
easily obtained by substitution of the invariant representation (65) into the system (22) and (54)–
(57).
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